February 15th, 2012

A new defense mechanism against viruses and cancer


A team of scientists from the Charité and German Rheumatism Research Center Berlin and the University of Geneva has found a fundamentally new mechanism how our defense system is ramped up when facing a viral intruder. Exploitation of this mechanism in vaccines sparks new hope for better prevention and therapy of infectious diseases and cancer.

“T killer cells” (CD8 T cells) represent an important element of our body’s defense system. They have the capacity to specifically identify and kill cells, which harbor viruses and bacteria or form a cancer. T killer cells would therefore represent an important component of yet unavailable vaccines against infections like HIV/AIDS, hepatitis C virus and malaria, and also for the treatment of cancer.

It has been a longstanding observation that there is no match to the overwhelming T killer cell armada, which is triggered when a viral infection invades our body. Scientists had generally accredited this observation to “pathogen-associated molecular patterns” (PAMPs) on viruses and other microbes. PAMPs, i.e. the “foreign look” of viruses, alert so-called “dendritic cells”, which serve as policemen coordinating the T killer cell response.

In a report now published in the prestigious international journal Science, researchers led by Prof. Max Löhning (Charité-University Medicine & DRFZ Berlin) and Prof. Daniel Pinschewer (University of Geneva) describe an additional general mechanism by which viral infection triggers potent T killer cells: ”Dying virus-infected cells themselves ring the alarm bells to T killer cells.“, Löhning says. Viruses cause infected cells to die, resulting in the release of cell components, which normally are not be visible to the outside – analogous to an injured individual loosing blood. Such substances, heralding injury when released, are referred to as “alarmins”. The scientists found that T killer cells can sense an alarmin called “interleukin 33” (IL-33). IL-33 is contained in cells, which form the scaffold of the T killer cells’ home, the spleen and lymph nodes, and is released when such scaffold cells die.

Mice lacking the gene encoding IL-33 failed to form a large T killer cell army upon viral infection. The few remaining cells had very poor fighting skills. Such mice were therefore exquisitely sensitive to several types of viral infections. Conversely, IL-33 could be used to artificially increase the T killer cell army, which was generated in response to vaccination. As Max Löhning and Daniel Pinschewer explain, PAMPs and alarmins apparently have complementary and non-redundant functions in shaping our T killer cell defense: “The “foreign look” of viruses (PAMPs) activates the “dendritic cell” policemen to engage T killer cells. T killer cells, however, remain lousy fighters unless alerted by a cell death in their neighborhood (alarmins).” These new findings could provide a key to effective vaccination against infectious diseases and cancer.

Link to article



Contact information:
Prof. Max Löhning
Department of Rheumatology & Clinical Immunology
Charité – University Medicine Berlin &
German Rheumatism Research Center Berlin (DRFZ)
Tel: +49 30 2846 0760
E-mail: loehning@drfz.de

Radbruch Prof. Dr. rer. nat. Andreas Radbruch Cell Biology Triantafyllopoulou_klein Dr. Antigoni Triantafyllopoulou Innate Immunity in Rheumatic Diseases Thurley Dr. Kevin Thurley Systems Biology of inflammation Ahmed Hegazy Dr. med. Dr. rer. nat. Ahmed N. Hegazy Inflammatory Mechanisms Polansky Dr. Julia Polansky-Biskup Immuno-Epigenetics Melchers Prof. Dr. Fritz Melchers Lymphocyte Development Farzin Mashreghi Dr. Mir-Farzin Mashreghi Therapeutic Gene Regulation Kruglov Dr. rer. nat. Andrey Kruglov Chronic Inflammation Loehning Prof. Dr. Max Löhning Pitzer Lab Osteoarthritis Research Kubagawa Prof. Dr. Hiromi Kubagawa Humoral Immune Regulation Hauser Prof. Dr. med. vet. Anja Erika Hauser Immune Dynamics Tokoyoda Dr. Koji Tokoyoda Osteoimmunology Scheffold Prof. Dr. rer. nat. Alexander Scheffold Cellular Immunology Niesner Dr. rer. nat. Raluca Niesner Biophysical Analytics Strangfeld Dr. med. Anja Strangfeld Pharmacoepidemiology Minden Prof. Dr. med. Kirsten Minden Paediatric Rheumatology Listing Dr. Joachim Listing Statistics & Clinical Studies Angela_Zink_230x230 Prof. Dr. Angela Zink Health Services Research Worm Prof. Dr. med. Margitta Worm Allergology Poddubnyy Prof. Dr. Denis Poddubnyy Spondyloarthritides Riemekasten Prof. Dr. med. Gabriela Riemekasten Cell Autoimmunity Hiepe Prof. Dr. med. Falk Hiepe Autoimmunology Hamann Prof. Dr. rer. nat. Alf Hamann Experimental Rheumatology Doerner Prof. Dr. med. Thomas Dörner B Cell Memory Buttgereit Prof. Dr. med. Frank Buttgereit Glucocorticoids & Bioenergetics Romagnani Prof. Dr. Chiara Romagnani Innate Immunity Hutloff Dr. rer. nat. Andreas Hutloff Chronic Immune Reactions Fillatreau Prof. Dr. rer. nat. Simon Fillatreau Immune Regulation Baumgrass Prof. Dr. Ria Baumgrass Signal Transduction Nedospasow Prof. Dr. Sergei Nedospasov Inflammation Biology